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LETTER TO THE EDITOR 

Calculation of crossover exponent from Heisenberg to Ising 
behaviour using the fourth-order c: expansion 

J E Kirkham 
Department of Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, England 

Received 11 August 1981 

Abstract. We extend the E expansion for the crossover exponent q5 from Heisenberg to 
king behaviour to fourth order in E = 4 - d. Resummation of this expansion incorporating 
the high-order behaviour gives numerical estimates in three dimensions which are in 
agreement with high-temperature series expansions and experimental results. 

In this letter we consider the application of the field theoretic method to the evaluation 
of the crossover exponent 4 from Heisenberg to king behaviour. We construct a 
fourth-order E expansion for 4 and then resum incorporating the high-order 
behaviour. 

We begin by giving a precise description of 4 and then explain how it can be related 
to an anomalous dimension of the n -component Landau-Ginzburg model. Consider a 
Heisenberg system with a weak spin anisotropy; if we decrease the temperature towards 
the critical point, the behaviour of the system changes in the neighbourhood of some 
temperature T” from the isotropic to the anisotropic behaviour. If 

AT = T” - TJg)  

AT-gl” (2) 

(1) 
where T, is the critical temperature and g the coupling constant of the anisotropy then 

defines the crossover exponent 4. It can be shown (Pfeuty et a1 1974) that this gives an 
extended scaling hypothesis for the susceptibility 

(3) 

where t = ( T  - T,)/T,, T, is the critical temperature and y the susceptibility exponent of 
the isotropic model. Consider the n-component Landau-Ginzburg Hamiltonian with a 
small anisotropy term 

x(T ,  g )  -At-Y x ( B g / t 4 )  

%’= ddX ( ~ ( V P ) ~  + i m 2 q 2  + 2 ( ( P ~ ) ~  + t g d a b q a q b )  (4) 

where dab is a symmetric traceless tensor. 
d n  

a = l  i = l  
c P z =  QicPi. 

i = l  
(v‘P)2= 1 1 VaQiVacPi  

We introduce a renormalised field qR = qZ-”2, renormalised couplings u ~ p ‘ ,  gR, and a 
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renormalised mass mk in the usual way. The Hamiltonian (4) written in terms of these 
new variables is 

d X : ( V ~ R ) ~ + + ~ R ~ R  2 2 +-(pk)2+$gRdab(PRa(PRb U R P E  +:(z-1)(vpR)2 4! 

1 
4! 

I d (  

f hi (z4' - 1)p; - '-(UR- ubz2)((P ' I 2  ++&bpRapRbgR[zpq - 11) 

( 5 )  
2 where Z42 = rn2/mR is the mass renormalisation, ut, = ,uL-&u0 and Z,, = g/gR is the 

renormalisation associated with the small anisotropy. We define 

where /3 (UR) is the renormalisation function 

of the isotropic theory. We can show that q5 is given in terms of the y's by 

where U* is the fixed point of the isotropic theory. The values of y,, y , ~  and U *  have 
already been calculated at fourth order by Vladimirov et a1 (1979). The evaluation of 
yVq(u*) to fourth order therefore will allow us to calculate p. The simplest vertex from 
which to calculate Z,, is the two-point function with one anisotropic insertion. We 
denote this by where the 0 denotes the absence of p2 insertions and i and j label 
the external legs. 

(9) ( 2  0 1) - 
rRhdij  - gRdab8ij + ( z q v  - 1)dabSijgR + a a b i j  

where is the sum of all one particle irreducible Feynman diagrams with two external 
legs and one anisotropic insertion. The diagrams contributing at one and two loops are 
shown in figure 1. Each graph must be proportional to dabSii by symmetry, so we can 
define 

r$o'l)=gR+(z,, - l ) g R + a .  (10) 
We can thus calculate Z,, in the minimal subtraction scheme ('t Hooft and Veltman 
1972) from the sum of the divergent parts of these diagrams. We use the skeleton 

Figure 1. Feynman diagrams which contribute to R at one and two loops 
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technique which is described in Vladimirov (1979) and also in de Alcantara Bonfim et a1 
(1981) to simplify the evaluation of most of the diagrams. For some diagrams, it is 
easier to use an external momentum q and a massless propagator rather than a massive 
propagator to control the infrared divergences. We can do this because within a 
minimal subtraction scheme the total renormalisation required for a given skeleton 
structure is independent of the mass and momentum. In order to calculate yq0(uR) we 
need p (uR) at three loops. We recalculate this in our renormalisation scheme as it is not 
a universal quantity. The result for y q a ( u ~ )  is 

2 (n+6)  2n2-47n-230 +”( 27x32  -uR+ UR- 
36 yqq (UR)  = - 3 

+- 35 x 64 (3n3+65n2+2580n+8140)) 

where p ( p )  is the pth order Riemann zeta function. We substitute U R  = U* using U* to 
O ( E ~ \  from Vladimirov et a1 (1979) to obtain 

3 -2E E 2  E (n2-4n -36)+- [24(n + 8)(5n + 22)5(3) 
YlP,(U*) ==+m (n + 8)’ 

-80f(5)(2n2+ 55n + 186) 
(n + 8)5  

+’ 2n 4 + T n  45 3 + 9 5 n 2 - 7 2 n - 7 8 4 ] + ~  

1 7 ( $ n 6 + 7 n  135 5 +459n4 - 1 1 3 76 n * + 40 224n + 122 1 12) + - 
(n +8)  

+3321n3+10941n2+15 408n +752))+0(c5) ,  (12) 

The third-order result is in agreement with that of Yamazaki (1974). We can rewrite 
equation (8) in a more useful form 

4 = (2- r l+yv&*)b  (13). 

since ~ - ~ - 2 + 7 7 = y ~ z ( u * ) a n d 7 7 = y , ( u * ) .  

y,,(u*) and rl and v from Vladimirov et a1 (1979). We find 

4=1+- + 

4 can then be easily evaluated as an E expansion by substitution of our value of 

EIZ s2n(n2f24n  +68) 
2(n + 8) 4(n + 813 

197n + 434n + 682)] -6n(5n +22)5(3) 
I n ( ;4 

-+6n3+- 
(n  + 8)5  2 

20n(2n2+55n +186)5(5) - 9n(5n +22)[(4) 
(n + 8)5 2(n + 8)4 
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+- 5(3)n (-n5+5n4-440n3-9068n'-46 088n -66 880) 
( n  +817 

n n6  9n5 2085n4 7103n3 -+-+-----+- 
16 4 

+- (n+8)'(16 2 

36 777n2+21 072n + 19 140 + o ( E ~ ) .  
4 )I + 

We see that as n + 0, q5 = 1 as expected. In the limit n +CO,  the leading order in a-' 
expansion is 

which can be calculated using scaling from the n-l expansions for the critical exponent y 
and ylP,+,(u*) which are derived in Wilson (1973), Wallace (1973) and Wallace and Zia 
(1975). If we expand (15) in E to O ( E ~ )  we obtain 

(16) 

and this is the same as the expansion to O(n-')  of (14). We used the same methods for 
evaluating numerical estimates as in de Alcantara Bonfim et a1 (1981) where a more 
detailed account may be found. The &-expansion series is asymptotic and has the 
high-order behaviour 

4 = 1 +& + a&' +:E3 + &e4 + n - ' [ - 4 ~  + E  + - 5 ( 3 ) E 4 ]  + o(2) + ~ ( n - ' )  

(- I ) ~ K  !a  "K b~~ " (1 + o(K-'))  (17) 

for K large enough (Lipatov 1977, BrCzin et a1 1977). The values of a and b for 
Y,+,,(U*) are 

b = 4 + i n .  
3 

n + 8  
a=- 

These are the same as those for y,z(u*) which are derived in BrCzin et a1 (1977). We can 
see this in the following way: at high order in perturbation theory, we know from 
instanton calculations that below the critical dimension the dominant contributions 
come from the irreducible diagrams (diagrams which have no subdivergences). In a (p4 

theory, there are no irreducible diagrams in either the two-point function or the vertex 
functions with insertions. All the irreducible diagrams occur in the four-point function 
and so contribute to the fixed point U * .  When we calculate ys,+,(u*) and y,+,z(u*) the 
behaviour of U* dominates and so they must have the same values of a and b and further 
the ratio of the C must be that of the leading orders in uR i.e. 2 / ( n  + 2). We can use this 
ratio as a guide to whether the asymptotic regime has been reached. In particular, we 
calculate the ratio 

where yE2 and y+,,+, k are the coefficients of in y,+,z(u*) and ylP,+,(u*) respectively. We 
find that 

R3(2) = 0.81 

R3(3) = 1.37 

R4(2) = 1.13 

R4(3) = 0.89 
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and so the fourth-order terms are coming close to the asymptotic behaviour. We are 
thus able to apply the conformal mapping technique using a = 3 / ( n  + 8), b = 4 + i n  
following precisely the same method as described in Vladimirov (1979) and de 
Alcantara Bonfim eta1 (1981). We find that 

-0.207 n = 2  
-0.181 n = 3  

for E = 1. If instead we calculate using the PadC-Bore1 method and a [2,2] approximant 
we find 

-0.207 n = 2  
-0.182 n = 3  Y,,(U*) = ( 

which are only different from the above in the third significant figure. In order to 
compare our results with other methods we need to evaluate 4. We cannot do this 
directly as the series for q5 has not reached its asymptotic regime; for n = 3 all terms are 
of the same sign at fourth order in E. We therefore calculated q5 from y,,(u*) using the 
scaling relation (13) .  We use the values of 77 and U obtained by Le Guillou and 
Zinn-Justin (1980) from the resummation of the six loop expansion in three 
dimensions. The result is 

1.177 n = 2  ' = (1.259 n = 3 .  

In table 1 we compare our results with those of the high-temperature series expansions 
and experiments and notice that they always lie within the error bounds of these results. 

Table 1. 

Results from High-temperature 
4 E expansion series Experiment 

n = 2  1.177 1.175 f 0.015' 1.18* 0.052 
n = 3  1.259 1.25 f0.015' 1.278 f 0.0764 

1.274*0.0454 

' Pfeuty et a1 (1974). 
Domann (1979) for TbP04. 
Basten et a1 (1979a, b, 1980) for CsMnBr3.2D20. 
Shapira and Oliveira (1978a, b, c) for two different samples of RbMnF3. 

In conclusion, the values of q5 we have found are in agreement with other methods. 
In view of the fact that our series is so short we have not carried out the more careful 
kind 01 resummation analysis used by Le Guillou and Zinn-Justin (1980) which also 
gives error estimates. It seems reasonable to assume by comparison of the PadC-Bore1 
and conformal mapping techniques that the error at this order is less than 2%. 

The author would like to thank Dr  M A Green for checking the &-expansion calculation 
using the 'Schoonschip' program. She would also like to thank Dr G A Gehring, Dr R B 
Stinchcombe and Professor D J Wallace for useful discussions. 
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